Forecasting stock market trend: a comparison of machine learning algorithms
نویسندگان
چکیده
منابع مشابه
Stock Market Forecasting Using Machine Learning Algorithms
Prediction of stock market is a long-time attractive topic to researchers from different fields. In particular, numerous studies have been conducted to predict the movement of stock market using machine learning algorithms such as support vector machine (SVM) and reinforcement learning. In this project, we propose a new prediction algorithm that exploits the temporal correlation among global st...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملA Hybrid Machine Learning System for Stock Market Forecasting
In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators...
متن کاملClassification of Indian Stock Market Data Using Machine Learning Algorithms
Classification of Indian stock market data has always been a certain appeal for researchers. In this paper, first time combination of three supervised machine learning algorithms, classification and regression tree (CART) , linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are proposed for classification of Indian stock market data, which gives simple interpretation o...
متن کاملForecasting Stock Market Trend using Prototype Generation Classifiers
Currently, stock price forecasting is carried out using either time series prediction methods or trend classifiers. The trend classifiers are designed to predict the behaviour of stock price’s movement. Recently, soft computing methods, like support vector machines, have shown promising results in the realization of this particular problem. In this paper, we apply several prototype generation c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finance, Markets and Valuation
سال: 2020
ISSN: 2530-3163
DOI: 10.46503/nluf8557